1) Center Drills / Centering Tools

Dc Ds l Dw

Spiral

Taps

Hand

(10)

MHCDS

Center Drills for Carbon Steels of Medium Hardness for Running at High Speed

Specification

Cutting Speed depending on Materials

Ductile cast iron: 15~40 (m/min)

Product Features

- ●In order to improve positioning accuracy of projection and shank tolerance, MHCDS has the cutting edge only on one end.
- Considering clearance between center point and bottom of center hole, cutting edge length (1) is made as short as possible to increase toughness.
- To increase centrality, drill point has 3 rakes and X thinning design, which enables high speed cutting and feeding.
- •Increased centrality leads to great improvement of surface finish and circularity of center-drilled hole.

Cutting Data

Great extension of tool life with MHCDS

Right pictures show difference of the damage on cutting edge between CD-S and MHCDS after 480 hole cuttings under same cutting condition (stated in right) MHCDS has smaller wear and edge damage. This tells we can continue to use MHCDS further.

Cutting condition [3×60°×8]

Work material	S55C			
Cutting speed	30m/min (1,200min ⁻¹)			
Feed	0.15mm/rev			
Machine	NC lathe			
Cutting Fluid	Water soluble cutting fluid			

<After drilling 480 holes> Large wear

<After drilling 480 holes> Small wear

MHCDS

Great improvement in surface roughness and circularity with MHCDS

Under the cutting condition stated above, the surface finish of center-drilled hole has greatly been improved. Circularity of center drilled hole as well as run-out tolerance of turning axis has been improved.

90 180 0 100*μ*m 270

Circularity of center drilled 60° face

Recommended cutting condition

●Material: Carbon Steels(S55C) Alloy Steels(SCM440)

Designation Dc $\times \theta \times$ Ds	Feed (mm/rev)	Revolution speed (min ⁻¹)		
1×60°×4	0.1	3,800		
1.5×60°×5	0.1	2,400		
2×60°×6		1,900		
2.5×60°×8	0.15	1,500		
3×60°×8	1 [1,200		
4×60°×10		1,000		
5×60°×12	0.2	800		
6×60°×16		600		

Dc	Ds	L	Q.	Dw	
Drill	Shank	Overall	Drill	Workpiece end-face	
dia.	dia.	length	length	Hole size	

Spiral Pointed Taps | Spiral Fluted Taps | Spiral Fluted Taps | (for through hole) | (for through hole) |

Hand Taps

4

Carbide Taps Roll Taps

6

Pipe Taps | Special Thread Taps | Simple Inspection Tools |

10

Segment: 51

Size Dc × θ × Ds	Code	Dc (mm)	Ds _(mm)	L (mm)	ℓ (mm)	Dw (mm)	TYPE	MSRP
$1 \times 60^{\circ} \times 4$	VMHCD1.0S	1	4	30	1	2.5	1	¥ 2,600
$1.5 \times 60^{\circ} \times 5$	VMHCD1.5S	1.5	5	30	1.5	4	1	¥ 2,470
$2 \times 60^{\circ} \times 6$	VMHCD2.0S	2	6	30	1.9	5	1	¥ 2,700
$2.5 \times 60^{\circ} \times 8$	VMHCD2.5S	2.5	8	40	2.4	6.5	1	¥ 3,270
$3 \times 60^{\circ} \times 8$	VMHCD3.0S	3	8	40	2.8	6.5	1	¥ 3,270
$4 \times 60^{\circ} \times 10$	VMHCD4.0S	4	10	45	3.8	8.5	1	¥ 4,780
$5 \times 60^{\circ} \times 12$	VMHCD5.0S	5	12	55	4.6	10	1	¥ 6,170
6 × 60° ×16	VMHCD6.0S	6	16	65	5.5	13.5	1	¥ 14,400

- · Machining conditions are calculated based on the workpiece end-face hole size Dw.
- For details on machining conditions, see TECHNICAL INFORMATION, "27. Table of recommend centering condition."